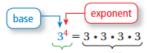
Name:	Period:	Date:

Math Unit 1: Numerical Expressions and Factors

Lesson 1.2- Powers and Exponents


SWBAT:

Paraphrase:

Essential Question: How can you use repeated factors in real-life situations?

Vocabulary

A power is a product of repeated factors. The base of a power is the repeated factor. The exponent of a power indicates the number of times the base is used as a factor.

3 is used as a factor 4 times. power

Power	Words
3 ²	Three squared, or three to the second
3 ³	Three cubed, or three to the third
34	Three to the fourth

Example 1

Write each product as a power.

Because 4 is used as a factor 5 times, its exponent is 5.

So,
$$4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 = 4^5$$
.

b.
$$12 \times 12 \times 12$$

Because 12 is used as a factor 3 times, its exponent is 3.

So,
$$12 \times 12 \times 12 = 12^3$$
.

Your Turn

Write the product as a power.

$$2. \quad 15 \times 15 \times 15 \times 15$$

Example 2

Find the value of each power.

a.
$$7^2$$

b.
$$5^3$$

$$7^2 = 7 \cdot 7$$

 $7^2 = 7 \cdot 7$ Write as repeated multiplication. $5^3 = 5 \cdot 5 \cdot 5$

$$5^3 = 5 \cdot 5 \cdot 5$$

$$= 49$$

$$= 125$$

Your Turn	Find the value of the power.
	3. 6 ³ 4. 9 ² 5. 3 ⁴ 6. 18 ²
Example 3	Perfect Square: 1 4 9 16 Determine whether each number is a perfect square.
	 a. 64 Because 8² = 64, 64 is a perfect square. b. 20 No whole number squared equals 20. So, 20 is not a perfect square.
Your Turn	Determine whether the number is a perfect square. 7. 25 8. 2 9. 99 10. 100
Notes / Questions	